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Reminder

▪ We discussed the concept of functions and defined limits, continuity and derivability 

thanks to fundamental definitions. 

▪ We showed in particular how the fundamental definition of the differentiability of a 

function can be used to find the derivative of some common functions. 

∀𝜀 > 0, ∃𝛼 > 0, ∀ℎ ∈ 𝐼, ℎ < 𝛼 ⟹
𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
− 𝑙 < 𝜀

𝑙 = lim
ℎ→0

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
= 𝑓′(𝑥)

▪ We introduced the need for the common tangent construction in phase diagrams, 

and gave an example of a power function in the Lennard-Jones potential. 

▪ We then insisted on the concepts of Taylor series and Taylor expansion. 

∀𝑥 ∈ 𝐼, 𝑓 𝑥 = ෍

𝑘=0

𝑛
𝑥𝑘

𝑘!
𝑓 𝑘 (0) +

𝑥𝑛+1

𝑛 + 1 !
𝑓 𝑛+1 (𝑐)

▪  For physical models, the arguments in functions must be a-dimensional !
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Overview

▪ Taylor expansion example

▪ Primitives and definition of integrals

▪ Basic integration techniques

▪ Curve and surface calculation

▪ Parametric functions

▪ Multi-variable functions

Next week: 

▪ Deriving the atomic diffusion equation

▪ Fourier transforms
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V

𝑓𝑉 𝑟 = −
𝑑𝑉

𝑑𝑟

𝑉 𝑟 = 𝜀0

𝑟0

𝑟

12

− 2
𝑟0

𝑟

6

𝑓𝑒𝑥𝑡 𝑟 =
𝑑𝑉

𝑑𝑟
= 12𝜖0 −

𝑟0
12

𝑟13
+

𝑟0
6

𝑟7

𝑑𝑓𝑒𝑥𝑡

𝑑𝑟
=

12𝜖0

𝑟2 13
𝑟0

𝑟

12

− 7
𝑟0

𝑟

6

 So,
𝑑𝑓𝑒𝑥𝑡

𝑑𝑟
𝑟0 =

72𝜀0

𝑟0
2

𝜖 =
Δ𝐿𝑧

𝐿0𝑧
=

Δ𝑟

𝑟0

𝑓𝑒𝑥𝑡 𝑟 = 𝑓𝑒𝑥𝑡 𝑟0 + ቤ
𝑑𝑓𝑒𝑥𝑡

𝑑𝑟
𝑟=𝑟0

𝑟 − 𝑟0 =
72𝜀0

𝑟0
2 𝑟 − 𝑟0

Example: Linear Hooke’s law

▪ From the fundamental definition, several operations on the differentiation of functions can 

be demonstrated.

𝜎 = 72
𝜀0

𝑟0
3 𝜖 𝜎 = 𝐸 𝜖

F = -k (r-r0) 

F F 

r0 

r 

V = k/2 (r-r0)
2 

V 

r0 

or



▪ The maximum force represents the force when the bond is breaking and the material 

should deform. 

▪ Metals however deforms at stresses much lower than the value found in theory. 


LJ
m   = 

 E
 27 

 

 

 

 

 

 

 
fext 

Force associée au potentiel: 

Force extérieure appliquée: : fext = - fV 

fext

V

Example: origin of plasticity



xy

t

b

▪ The plastic deformation in metals is not due to individual bonds breaking but rather the 

movement of linear defects – dislocations – that can move at low stress applied. 

Example: origin of plasticity in metals



Work needed to break a bond 

▪ What work one needs to perform to separate two atoms in a bond ? 

𝑊𝑒𝑥𝑡 = න
𝑟=𝑟0

+∞

𝐹𝑒𝑥𝑡 𝑟 𝑑𝑟 = න
𝑟=𝑟0

+∞

−𝐹 𝑟 𝑑𝑟

= න
𝑟=𝑟0

+∞ 𝑑𝑉

𝑑𝑟
𝑑𝑟 = න

𝑟=𝑟0

+∞

𝑑𝑉 = 𝑉 𝑟 𝑟=𝑟0
𝑟→+∞

lim
𝑟→∞

𝑉 𝑟 − 𝑉 𝑟0 = 0 − (−𝜀0)

𝑊𝑒𝑥𝑡 = 𝜀0

▪ Did the work performed depend on the path taken to bring the atoms to infinity ?

7
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Primitives and integrals

▪ Given F and f two functions continuous and differentiable over  𝐼 ⊂ ℝ, F is a primitive of f if 

 ∀𝑥 ∈ 𝐼, 𝐹′ 𝑥 = 𝑓 𝑥   

▪ If F is a primitive of f, ∀𝜆 ∈ ℝ 𝑜𝑟 ℂ, 𝐹 + 𝜆 is a primitive of f. 

▪ Fundamental theorem: F and f two functions continuous and differentiable over  𝑎, 𝑏 ⊂ ℝ, 

the area under the curve 𝑓 𝑥 , 𝑥 ∈ 𝑎, 𝑏  is written, and verifies: 

𝐹 𝑏 − 𝐹 𝑎 = න

𝑎

𝑏

𝑓 𝑥 𝑑𝑥

▪ Riemann’s interpretation gives an intuitive understanding of a rather bizarre fact !
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Primitives and Integrals 

▪ One builds the concept of integration in different ways, the Rieman integral approach being 

very intuitive and closely linked to how we use integrals in engineering and materials 

Science. 

▪ A few results are important to build this theory, as a 

reminder: 

o Stair-case functions are piecewise continuous 

functions over an interval in ℝ.

o Every continuous function can be approximated by 

stair case functions, i.e. it can be the limit of a 

sequence of stair-case functions. 

o Every bounded function 𝑓: 𝑎, 𝑏 → ℝ, that is 

continuous (actually almost continuous everywhere) 

over 𝑎, 𝑏 ⊂ ℝ, is Rieman-integrable, i.e: 

▪ More generally, let’s consider an interval 𝑎, 𝑏 0 < 𝑎 < 𝑏 ≤ +∞ , and f a function 𝑎, 𝑏  → ℝ, 

that is integrable on every closed interval in 𝑎, 𝑏 . If we consider the function                

𝐹 𝑥 = ׬
𝑎

𝑥
𝑓 𝑡 𝑑𝑡

If lim
𝑥→𝑏

𝐹 𝑥 = 𝑙, hence exists and is finite, then ׬
𝑎

𝑏
𝑓 𝑡 𝑑𝑡 converges and ׬

𝑎

𝑏
𝑓 𝑡 𝑑𝑡 = 𝑙

∀𝜀 > 0, ∃𝜑, 𝜓 stair case functions such that 𝜑 ≤ 𝑓 ≤ 𝜓 and ׬
𝑎

𝑏
𝜓 − 𝜑 𝑡 𝑑𝑡 < 𝜀 
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Primitives and Integrals 

▪ Let f be a continuous real-value function defined on a closed interval [a, b]. Let F be the 

function defined, for all x in [a, b], by 

𝐹 𝑥 = ׬
0

𝑥
𝑓 𝑡 𝑑𝑡 

Then F is uniformly continuous on [a, b] and differentiable on the open interval (a, b), and

𝐹′ 𝑥 = 𝑓(𝑥)  for all x in (a, b) so F is an antiderivative (or primitive) of f. 

▪ The form expressed above is an indefinite form, also written ׬ 𝑓 𝑥 𝑑𝑥

▪ Definite forms is an integral over a defined interval that returns a number.

▪ Every continuous function has an anti-derivative, actually an infinity of them shifted by a 

constant. 

o The difficulty is to find antiderivatives and integrate functions !

o Two techniques: substitution and part integration

▪ Important practical use of integrals: 

▪ Calculate surfaces, volumes… and length !

▪ Sum infinitesimal time steps and length / surface / volume: work, fluxes… 

▪ Sum over densities (of states, of probabilities…)

▪ Differential equations

▪ Functions defined with integrals: Laplace and Fourier transforms
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Common integration rules
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Common antiderivatives
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Common antiderivatives
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Common antiderivatives

▪ Functions that are integrable but with no antiderivatives that can be expressed with usual

functions (powers, inverse, trigonometric, exponential, logarithmic etc..):

o 𝑒−𝑥2
; 

sin(𝑥)

𝑥
;

1

ln(𝑥)
….



Practical use of integrals: surface, volumes… and lengths !

o 𝑐𝑜𝑠ℎ 𝑥 =
𝑒𝑥+𝑒−𝑥

2

o sinh 𝑥 =
𝑒𝑥−𝑒−𝑥

2

o 𝑡𝑎𝑛ℎ 𝑥 =
sinh(x)

cosh(𝑥)

o 𝑐𝑜𝑠ℎ2 𝑥 − 𝑠𝑖𝑛ℎ2 𝑥 = 1

o
𝑑

𝑑𝑥
𝑐𝑜𝑠ℎ−1(𝑥) =

1

𝑥2−1

▪ Calculating Surfaces: Hyperbolic functions

▪ Parametric functions:

Functions represented in the (x,y) plan, or at higher dimensions, can often be defined by a 

paramter (time, angle….). 

Example: 

o Hyperbolic functions

o Light polarization:

15
y)t-kzcos(E)tz,(E

xt)-kzcos(E)tz,(E

0yy

0xx









+=

=



Arc length and Curvature

▪ Calculation of Arc length

𝑠 = න

𝑎

𝑏

1 +
𝑑𝑦

𝑑𝑥

2

𝑑𝑥 = න

𝑎

𝑏

1 + 𝑓′(𝑥)2𝑑𝑥
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▪ Curvature The curvarture is defined as 𝜅 =
1

𝑅

where R is given by:



y

� =
2�

�

▪ Parametric equation of a moving surface: 𝑦𝑠(𝑥) = 𝑑 + ℎ sin(
2𝜋

𝜆
𝑥)

o What is the surface area ? (at first order)

o What is the normal to the surface? 

o What is the curvature ?

o Parametric function of time for a moving interface

ቊ
𝑥 𝑡 = 𝑣𝑡

𝑦 𝑡 = 𝑑 + h(t)sin(
2𝜋

𝜆
𝑣𝑡)

In such configurations, one can write: 
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
×

𝑑𝑡

𝑑𝑥

Example: arc length and parametric equation of moving interface

▪ Example of Integral:  0׬
+∞𝑒−𝑢 𝑢 d𝑢 

This integral appears in semiconductor physics, when computing the 

number of free electrons (electrons in the conduction band) at a given 

temeprature:

 

 )(exp1

1
)(

 −+
=

E
Ef




=

cE

dEEDEfn )()(

( ) ( ) 2/12/3

32
2

2
)( cc EEm

V
ED −=



Occupation: probability of occupied state: Density of states per unit energy:

Density of free electrons: 



Work needed to break a bond 

𝑊𝑒𝑥𝑡 = න
𝑟=𝑟0

+∞

𝐹𝑒𝑥𝑡 𝑟 𝑑𝑟 = න
𝑟=𝑟0

+∞

−𝐹 𝑟 𝑑𝑟

= න
𝑟=𝑟0

+∞ 𝑑𝑉

𝑑𝑟
𝑑𝑟 = න

𝑟=𝑟0

+∞

𝑑𝑉 = 𝑉 𝑟 𝑟=𝑟0
𝑟→+∞

lim
𝑟→∞

𝑉 𝑟 − 𝑉 𝑟0 = 0 − (−𝜀0)

𝑊𝑒𝑥𝑡 = 𝜀0

▪ Did the work performed depend on the path taken to bring the atoms to infinity ?

▪ A central force being conservative, it derives from a potential (as we saw). It is hence an 

exact differential and the work should not depend on the path.  

▪ In an orthonormal coordinate system like the spherical one, a central force is given by 

𝑭 = 𝐹 𝑟 𝒆𝒓. The work is hence always directed along 𝒆𝒓 and regardless of the path, we 

will have 𝑊𝑒𝑥𝑡 = ׬
𝑟=𝑟0

+∞
𝐹𝑒𝑥𝑡 𝑟 𝑑𝑟. 18

▪ The work required to break a bound and bring an atom from equilibrium to infinity:  
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Multiple variable functions

▪ All continuous functions of one variable we manipulate have antiderivative, and most of 

the times can be differentiated over extensive domains. 

They hence form “exact differential”, that is the integration over an infinitesimal change of 

variable dx is not dependent on the path, since we consider an algebraic path and not its 

absolute value. 

▪ For multi-variable functions that we commonly encounter in materials science, it is more 

complex because paths to go to a point (x,y) are plenty.  

▪ All the discussions we had regarding the continuity, limit and differentiability of single 

variable function can be extended to n-variable function in ℝ𝑛. 

▪ Continuity: 

∀𝜀 > 0, ∃𝛼 > 0, ∀𝑥 ∈ 𝐼, 𝑑(𝑥, 𝑥0) < 𝛼 ⟹ 𝑑(𝑓 𝑥 , 𝑓 𝑥0 ) < 𝜀
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Exact and Inexact differentials

▪ Partial differentiation

Multi-variable functions will be studied usually by looking at how they vary when changing 

only one variable at a time: 

wirh

▪ Higher order Partial differentiation

Since partial derivatives of a function are also functions of several variables, they can be 

differentiated with respect to any variable. For a function of two variables: 

𝜕𝑓

𝜕𝑥
𝑥0, 𝑦0 = lim

ℎ→0

𝑓 𝑥0 + ℎ, 𝑦0 − 𝑓(𝑥0, 𝑦0)

ℎ

𝜕𝑓

𝜕𝑦
𝑥0, 𝑦0 = lim

ℎ→0

𝑓 𝑥0, 𝑦0 + ℎ − 𝑓(𝑥0, 𝑦0)

ℎ
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Exact and Inexact differential: Multiple variable functions

▪ Differentiability: 

If a function f defined on an open set I of ℝ𝑛, f is differentiable in I if all its partial derivatives 

exist and are continuous. 

▪ Clairaut’s theorem: 

If a function f defined on an open set I of ℝ2, and if all the partial 

derivative of f exist and are continuous, then: 
𝜕2𝑓

𝜕𝑥𝜕𝑦
=

𝜕2𝑓

𝜕𝑦𝜕𝑥

This is the case for most functions we handle !

▪ Differential form and total differential:

A differentiable form is an expression of the type 

𝑄(𝑥, 𝑦) 𝑑𝑥 + 𝑃(𝑥, 𝑦)𝑑𝑦

In some open domain of a space, a differential form is an exact differential if it is equal to 

the total differential of a differentiable function f in an orthogonal coordinate system, ie: 

𝑑𝑓 =
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦

In that case, it is an exact differential and since f is differentiable and has continuous 

partial derivatives, we must have: 
𝜕2𝑓

𝜕𝑥𝜕𝑦
=

𝜕2𝑓

𝜕𝑦𝜕𝑥
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Exact and Inexact differential

▪ An other way to look at it is the following: 

A differential form 𝑄(𝑥, 𝑦)𝑑𝑥 + 𝑃 𝑥, 𝑦 𝑑𝑦 is an exact differential if and only if

    
𝜕𝑄

𝜕𝑦
=

𝜕𝑃

𝜕𝑥

▪ This is a very convenient result and great test ! 

▪ One can then find a function f such as 𝑄 𝑥, 𝑦 =
𝜕𝑓

𝜕𝑥
 and 𝑃 𝑥, 𝑦 =

𝜕𝑓

𝜕𝑦

▪ An exact differential have integrals that are path independent: 𝑑𝑓 = 𝜵𝒇. 𝒅𝒓

න
𝐴

𝐵

𝜵𝒇. 𝒅𝒓 = 𝑓 𝐵 − 𝑓(𝐴)

▪ Inexact differential are not path independent, which is the case for work produced and heat 

exchange in thermodynamics functions: 

▪ State functions are exact differentials

▪ Exchange functions are inexact differentials that depend on the integration path. 

▪ Examples: 𝑑𝑊 = 𝑒𝑥+𝑦𝑑𝑥 + 𝑒−𝑥+𝑦𝑑𝑦

       𝑑𝑊 = 𝑦𝑑𝑥 + 𝑥𝑑𝑦



Reminder: one-variable functions

▪ Successive derivatives can help evaluate in a finer way the 

change of functions, and in particular if they have a maximum or 

a minimum locally.  

▪ For a function to have an extremum at a point 𝒙𝟎, it is 

necessary that 𝑓′ 𝑥0 = 0. It is however not sufficient. 

▪ It must also be such that 𝑓′′ 𝑥0 > 0 (convex) or 𝑓′′ 𝑥0 < 0 

(concave).

▪ A point of inflexion is such that 𝑓′′ 𝑥0 = 0, marking where the 

concavity of a function changes. 

     We must also have 𝑓′′′ 𝑥0 ≠ 0 (for example𝑓 𝑥 = (𝑥 − 1)4).

Examples: 

répulsion r < r0 
V 

r r0 

attraction r > r0 
 

équilibre r = r0 
 

-e0 

V = 0 


















r0

r

12

 - 2






r0

r

6

 

Lennard-Jones potential: bonds  Electrons Occupancy

23
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Extremum and Saddle Points

▪ Extremum: 

o A multi-variable function 𝑓: ℝ𝑛 → ℝ admits a local maximum at a vector point 𝒙𝟎 if 

there exists a small region 𝐼 ⊂ ℝ𝑛 near that point for which ∀𝒙 ∈ 𝐼, 𝑓(𝒙) ≤ 𝑓(𝒙𝟎)

Which you can write: ∃𝛼 ∈ ℝ, ∀𝒉 ∈ ℝ𝑛 , 𝑑 𝒙𝟎 + 𝒉, 𝒙𝟎 < 𝛼 → 𝑓(𝒙𝟎 + 𝒉) ≤ 𝑓(𝒙𝟎)

o 𝑓: ℝ𝑛 → ℝ admits a local maximum at a vector point 𝒙𝟎 if there exists a small region

𝐼 ⊂ ℝ𝑛 near that point for which ∀𝒙 ∈ 𝐼, 𝑓(𝒙) ≥ 𝑓(𝒙𝟎)

▪ At a local maximum or minimum, we must have: ∀𝑖,
𝜕𝑓

𝜕𝑥𝑖
𝒙𝟎 = 0.

▪ For a two variable funciton: 
𝜕𝑓

𝜕𝑥
𝑥0, 𝑦0 =

𝜕𝑓

𝜕𝑦
𝑥0, 𝑦0 = 0. 

▪ This condition is however not sufficient !
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Extremum and Saddle Points

▪ To look for a condition for an extremum, we can look at the expansion of a at least three times 

differentiable function 𝑓: ℝ2 → ℝ around a point 𝑥0, 𝑦0 : 

For h and k small, we have: 

𝑓 𝑥0 + ℎ, 𝑦0 + 𝑘 − 𝑓 𝑥0, 𝑦0 = ℎ
𝜕𝑓

𝜕𝑥
𝑥0, 𝑦0 + k

𝜕𝑓

𝜕𝑦
𝑥0, 𝑦0 +

𝑘2

2!

ℎ

𝑘

2 𝜕2𝑓

𝜕𝑥2 𝑥0, 𝑦0 + 2ℎ𝑘
𝜕2𝑓

𝜕𝑥𝜕𝑦
𝑥0, 𝑦0 +

𝜕2𝑓

𝜕𝑦2 𝑥0, 𝑦0  

+𝑜 ℎ2, 𝑘2, ℎ𝑘

▪ At an extremum: 
𝜕𝑓

𝜕𝑥
𝑥0, 𝑦0 =

𝜕𝑓

𝜕𝑦
𝑥0, 𝑦0 = 0, and so:

𝑓 𝑥0 + ℎ, 𝑦0 + 𝑘 − 𝑓 𝑥0, 𝑦0 =
𝑘2

2!

ℎ

𝑘

2 𝜕2𝑓

𝜕𝑥2 𝑥0, 𝑦0 + 2
ℎ

𝑘

𝜕2𝑓

𝜕𝑥𝜕𝑦
𝑥0, 𝑦0 +

𝜕2𝑓

𝜕𝑦2 𝑥0, 𝑦0 + 𝑜 ℎ2, 𝑘2, ℎ𝑘  

▪ We hence have a quadratic function in 
ℎ

𝑘
: 

ℎ

𝑘

2 𝜕2𝑓

𝜕𝑥2 𝑥0, 𝑦0 + 2
ℎ

𝑘

𝜕2𝑓

𝜕𝑥𝜕𝑦
𝑥0, 𝑦0 +

𝜕2𝑓

𝜕𝑦2 𝑥0, 𝑦0

Which will be positive or negative for all h,k, if and only if it has no roots, ie if the determinant is 

strictly negative: 

𝜕2𝑓

𝜕𝑥𝜕𝑦
𝑥0, 𝑦0  

2

−
𝜕2𝑓

𝜕𝑥2
𝑥0, 𝑦0

𝜕2𝑓

𝜕𝑦2
𝑥0, 𝑦0 < 0
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Extremum and Saddle Points

▪ So there is an extremum at 𝑥0, 𝑦0 if and only if 

𝜕𝑓

𝜕𝑥
𝑥0, 𝑦0 =

𝜕𝑓

𝜕𝑦
𝑥0, 𝑦0 = 0 and 

𝜕2𝑓

𝜕𝑥𝜕𝑦
𝑥0, 𝑦0  

2

−
𝜕2𝑓

𝜕𝑥2 𝑥0, 𝑦0
𝜕2𝑓

𝜕𝑦2 𝑥0, 𝑦0 < 0

It is a minimum if  
𝜕2𝑓

𝜕𝑥2 𝑥0, 𝑦0 > 0 and  
𝜕2𝑓

𝜕𝑦2 𝑥0, 𝑦0 > 0

It is a maximum if   
𝜕2𝑓

𝜕𝑥2 𝑥0, 𝑦0 < 0 and  
𝜕2𝑓

𝜕𝑦2 𝑥0, 𝑦0 < 0

▪ Link with an eigen value criteria: 

▪ The Hessian matrix is a matrix of functions: 𝐻 𝑥, 𝑦 =

𝜕2𝑓

𝜕𝑥2 𝑥, 𝑦
𝜕2𝑓

𝜕𝑥𝜕𝑦
𝑥, 𝑦

𝜕2𝑓

𝜕𝑥𝜕𝑦
𝑥, 𝑦

𝜕2𝑓

𝜕𝑦2 𝑥, 𝑦

▪ The real matrix 𝐻 𝑥0, 𝑦0 is symetric ! From the spectral theorem, it has real, orthogonal  

eigen values ! And, it can be diagonalized. 

▪ The determinant at 𝑥0, 𝑦0 is then: 

det 𝐻 𝑥0, 𝑦0 =
𝜕2𝑓

𝜕𝑥2
𝑥0, 𝑦0

𝜕2𝑓

𝜕𝑦2
𝑥0, 𝑦0 −

𝜕2𝑓

𝜕𝑥𝜕𝑦
𝑥0, 𝑦0  

2
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Extremum and Saddle Points

▪ The condition 
𝜕2𝑓

𝜕𝑥𝜕𝑦
𝑥0, 𝑦0  

2

−
𝜕2𝑓

𝜕𝑥2 𝑥0, 𝑦0
𝜕2𝑓

𝜕𝑦2 𝑥0, 𝑦0 < 0 is then equivalent to the 

condition det 𝐻 𝑥0, 𝑦0 > 0.

▪ Since the real matrix 𝐻 𝑥0, 𝑦0 can be diagonalized, if 𝜆1 and 𝜆2 are its eigenvalues, we must 

have det 𝐻 𝑥0, 𝑦0 = 𝜆1 𝜆2 > 0, and so necessarily 𝜆1 and 𝜆2 are of the same sign. 

▪ If 𝜆1 and 𝜆2 are negative, we have a local maximum (the trace is negative, and so will be

second derivatives.  

▪ If 𝜆1 and 𝜆2 are positive, we have a local minimum. 

▪ If 
𝜕2𝑓

𝜕𝑥𝜕𝑦
𝑥0, 𝑦0  

2

−
𝜕2𝑓

𝜕𝑥2 𝑥0, 𝑦0
𝜕2𝑓

𝜕𝑦2 𝑥0, 𝑦0 < 0, ie if 𝜆1 and 𝜆2 are of oppposite sign,  we

have a Saddle point. 

Example: 𝑓 𝑥, 𝑦 = 𝑥2 − 𝑦2

It means that the concavity of f is opposite in the x and y directions, hence the second term is

negative leading to an overall positive expression. 

▪ If 
𝜕2𝑓

𝜕𝑥𝜕𝑦
𝑥0, 𝑦0  

2

−
𝜕2𝑓

𝜕𝑥2 𝑥0, 𝑦0
𝜕2𝑓

𝜕𝑦2 𝑥0, 𝑦0 = 0, we don’t have enough information to tell 

with only the second derivative. 

▪ Note that one can write: 𝑓 𝒙 + ∆𝒙 = 𝑓 𝒙 + ∇𝑓(𝒙)𝑇 . ∆𝒙 +
𝟏

𝟐
∆𝒙𝑇 . 𝐇 𝐱 . ∆𝒙 + 𝑜( ∆𝒙2 )



Uniform Continuity and Uniform Convergence

▪ A function f of one variable (𝑓: ℝ → ℝ 𝑜𝑟 ℂ) is uniformly continuous over a segment 𝐼 ⊂ ℝ if:

∀𝜀 > 0, ∃𝛼 > 0, ∀ 𝑥, 𝑦 ∈ 𝐼, 𝑥 − 𝑦 < 𝛼 → 𝑓 𝑥 − 𝑓 𝑦 < 𝜀

▪ Continuity as defined before is a local property: f is continuous at the point 𝑥0 ∈ 𝐼 if:

∀𝜀 > 0, ∃𝛼 > 0, ∀𝑥 ∈ 𝐼, 𝑥 − 𝑥0 < 𝛼 ⟹ 𝑓 𝑥 − 𝑓(𝑥0) < 𝜀

So the number 𝛼 depends on 𝑥0, while for the uniform continuity, 𝛼 is independent of the 

point in the interval considered.  

Examples: 
1

𝑥
, 𝑥

▪ Uniform convergence: 

o A sequence of functions 𝑓𝑛 , n ∈ ℕ, from ℝ𝑛 to ℝ, is said to be uniformly

convergent to a function f over a region 𝐼 ⊂ ℝ𝑛, if: 

∀𝒙 ∈ 𝐼, ∀𝜀 > 0, ∃𝑁 ∈ ℕ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀𝑛 ≥ 𝑁, 𝑓𝑛 𝒙 − 𝑓 𝒙 < 𝜀
28
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▪ Changing the order of limit and integrals:

If 𝑓𝑛 , n ∈ ℕ is a sequence of Riemann integrable functions defined on a compact interval I, 

(a close interval in ℝ for example) which uniformly converge with limit f, then f is Riemann 

integrable and its integral can be computed as the limit of the integrals of the 𝑓𝑛 :

𝑥∈𝐼׬ 
𝑓 = 𝑥∈𝐼׬

lim
𝑛→∞

𝑓𝑛 = lim
𝑛→∞

𝑥∈𝐼׬
𝑓𝑛 

▪ Changing the order of limits: 

For a function of two variables f(x,y), we can invert the order of limits in conditions that are 

almost always met :

Inverting the order of limits and integration

&

▪ Uniform convergence: expressed for a two-variable function converging toward a function: 

A function 𝑓: ℝ2 → ℝ converges uniformly at 𝑦 = 𝑦0 towards a function g: ℝ → ℝ over a region

𝐼 ⊂ ℝ if: 

∀𝒙 ∈ 𝐼, ∀𝜀 > 0, ∃∈ 𝛿 > 0 𝑦 − 𝑦0 < 𝛿 → 𝑓 𝑥, 𝑦 − 𝑔 𝑥 < 𝜀



Inverting the order of limits and integration

▪ Changing the order of integrals:

Fubini's theorem : one may switch the order of integration if the double integral yields a 

finite answer when the integrand is replaced by its absolute value.

This is the case in the vast majority of problems encountered in Materials Science.  
30

▪ Leibnitz formula: 

Let 𝑓(𝑥, 𝑡) be a function such that both 𝑓(𝑥, 𝑡) and its partial derivatives 
𝜕𝑓

𝜕𝑥
are continuous in t 

and x in some region including for 𝑎 ( 𝑥 ) ≤ 𝑡 ≤ 𝑏 ( 𝑥 ) and for 𝑥0 ≤ 𝑥 ≤ 𝑥1 . If the functions 𝑎(𝑥) 

and 𝑏(𝑥) are also continuous and have continuous derivatives for 𝑥0 ≤ 𝑥 ≤ 𝑥1 . 

Then, for 𝑥0 ≤  𝑥 ≤  𝑥1:

𝑑

𝑑𝑥
׬

𝑎(𝑥)

𝑏(𝑥)
𝑓 𝑥, 𝑡 𝑑𝑡 = 𝑓 𝑥, 𝑏 𝑥 . 𝑏′ 𝑥 − 𝑓 𝑥, 𝑎 𝑥 . 𝑎′ 𝑥 ׬ +

𝑎(𝑥)

𝑏(𝑥) 𝜕𝑓

𝜕𝑥
𝑥, 𝑡 𝑑𝑡

In particular for constant boundaries: 

𝑑

𝑑𝑥
න

𝑎

𝑏

𝑓 𝑥, 𝑡 𝑑𝑡 = න
𝑎

𝑏 𝜕𝑓

𝜕𝑥
𝑥, 𝑡 𝑑𝑡
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SUMMARY

▪ We reviewed important concepts regarding the mechanical properties of metals, via 

using Taylor expansion and integration of the Lennard-Jones potential. 

▪ We reviewed the concept of primitive (or antiderivatives) and of Riemann integrals. 

▪ We defined the primitive in terms of an integrable function, and reminded the rules 

for integration and common primitives. 

▪ We then showed examples of using integrals to calculate length and surfaces, 

number of free electrons in a semiconductor, and the work done to break a bond. 

▪ This led us to discuss the difference between exact and inexact differentials. 

▪ We also reminded a few results regarding multi-variable functions, and the 

conditions when one can switch the order for integration, differentiation, and limits. 

▪ Next class:

▪ We will these concepts to precisely derive the diffusion equation for atomic 

diffusion and introduce Fourrier transforms

▪ We will also study Laplace transforms. 
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